A simpler and
shorter

representation of
XML data

inspired by Tcl

Agenda

* Wholam

* What is XML

* XML readability issue

* Alternatives to XML

* The search for a simpler way to present XML itself
* The SML proposal

* The sml conversion script

* Other scripts of interest

* SML dreams

Who | am

* Jean-Francois Larvoire, aka. JF, or Jeff
* Graduated from Ecole Centrale Paris in 1984

* Software developer since 1985 at HP, in Grenoble France,
and Roseville and Sunnyvale California.

* Worked for several years on Tcl management scripts for
Lustre storage clusters

* Now using more often Windows than Linux.
Most examples for Windows.

. L'c')ntact:

with sml in the subject

mailto:jf.larvoire@free.fr

XML for Mummies

* A document standard published in 1998 by the W3C
* Structured text, representing a tree of data

* Syntax based on the older SGML standard

* Distinguishes text and <markup>

* The design goals were compatibility with SGML and
HTML, versatility, ease of use (x4), simplicity (x2),
conciseness (x2).

« XML 1.0 is most popular data exchange standard now
* XML 1.1 almost never used

Well formed XML

* Nodes of the data tree are called elements

« Each XML document contains an XML header, and one root
element
<?xml version="1.0"7>
<greeting>Hello, XML world!</greeting>

* Elements may contain inner elements, etc.
<?xml version="1.0"7?>
<world>
<country>France</country>
<country>USA
<state>California</state>
<state>Louilisiana</state>
</country>
</world>

Elements structure

* Normal elements, with a content
<name attribl="valuel"

éttribN=“vaiueN“>cUnten£%%name>————————————> <

>

start tag end tag
The content is any combination of text and inner elements.

* Empty elements
<name attribl="valuel" ... attribN="valueN" />

* Extra spaces and new lines between tokens are not significant

* Element names and attribute names must begin with a letter, and
contain only letters, digits, and ".", *-", ' " ":".

* Attribute values must be enclosed in ‘quotes’ or "double quotes", and
may not contain '<', '&', nor their own limiter quote.

Other notable features

* Processing instructions
<?xml version="1.0"7?>

e Comments
<!-— This i1s an XML comment -->

 CDATA sections
<! [CDATA [<sample>XML element</sample>]]>

* Entities
<="<'" >=">" gamp;="'&' '=""'" "="'""
Segegter—=1lél —gegror=1c!

* Declarations
<!ELEMENT book (title, body, supplements?)>
A valid XML document is one that is well-formed, AND where
all elements respect the declared constraints.

Is XML simple?

Goal #6 in the XML specification was: XML documents
should be human-legible and reasonably clear.

The XML specification is several thousand lines long.

Writing a full-featured XML 1/O library is a huge work...
Fortunately good libraries are available now.

In practice, small pieces of XML limited to a few lines are
indeed simple to read by humans.

In practice, large XML files are obscured by lots of markup.
=> Very difficult to read by humans

XML files that drove me
crazy (1/2)

<?xml version="1.0" ?>
<cib admin_epoch="0" epoch="0" num updates="0">
<configuration>
<crm_config>
<cluster_property_set id="cib-bootstrap-options">
<attributes>
<nvpair id="cib-bootstrap-options-symmetric-cluster" name="symmetric-cluster" value="true"/>
<nvpair id="cib-bootstrap-options-no-quorum-policy" name="no-quorum-policy" value="stop"/>
<nvpair id="cib-bootstrap-options-default-resource-stickiness" name="default-resource-stickiness" value="0"/>
<nvpair "cib-bootstrap-options-default-resource-failure-stickiness" name="default-resource-failure-stickiness" value="0"/>
<nvpair "cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="true"/>

<nvpair cib-bootstrap-options-stonith-action" name="stonith-action" value="reboot"/>
<nvpair "cib-bootstrap-options-startup-fencing" name="startup-fencing" value="true"/>
<nvpair "cib-bootstrap-options-stop-orphan-resources" name="stop-orphan-resources" value="true"/>

"cib-bootstrap-options-stop-orphan-actions" name="stop-orphan-actions" value="true"/>
"cib-bootstrap-options-remove-after-stop" name="remove-after-stop" value="false"/>

<nvpair
<nvpair

<nvpair cib-bootstrap-options-short-resource-names" name="short-resource-names" value="true"/>
<nvpair "cib-bootstrap-options-transition-idle-timeout" name="transition-idle-timeout" value="5min"/>
<nvpair "cib-bootstrap-options-default-action-timeout" name="default-action-timeout" value="600s"/>
<nvpair "cib-bootstrap-options-is-managed-default" name="is-managed-default" value="true"/>

<nvpair "cib-bootstrap-options-cluster-delay" name="cluster-delay" value="60s"/>

<nvpair id="cib-bootstrap-options-pe-error-series-max" name="pe-error-series-max" value="-1"/>
<nvpair id="cib-bootstrap-options-pe-warn-series-max" name="pe-warn-series-max" value="-1"/>
<nvpair id="cib-bootstrap-options-pe-input-series-max" name="pe-input-series-max" value="-1"/>
</attributes>
</c1uster_Property_set>
</crm_config>
<nodes/>
<resources>
<primitive class="ocf" id="ostl" provider="heartbeat" type="Filesystem">
<operations>
<op id="ost1_mon" interval="120s" name="monitor" timeout="60s"/>
</operations>
<instance_attributes id="ostl_inst attr">
<attributes>
<nvpair id="ostl_attr 0" name="device" value="/etc/sfs/luns/lun8"/>
<nvpair id="ostl_attr_ 1" name="directory" value="/mnt/ostl"/>
<nvpair id="ostl_attr 2" name="fstype" value="lustre"/>
</attributes>
</instance_attributes>
</primitive>
<primitive class="ocf" id="ost2" provider="heartbeat" type="Filesystem">
<operations>
<op id="ost2_mon" interval="120s" name="monitor" timeout="60s"/>
</operations>
<instance_attributes id="ost2_inst attr">
<attributes>
<nvpair id="ost2_attr_ 0" name="device" value="/etc/sfs/luns/lunl0"/>
<nvpair id="ost2_attr_ 1" name="directory" value="/mnt/ost2"/>
<nvpair id="ost2_attr 2" name="fstype" value="lustre"/>
</attributes>
</instance_attributes>
</primitive>

quinc

X .
in, utes i t_a
<
nithin i teelY =" clofeh: " "
<nvpair id="stonith quincy3_attr 2" name="clone_node_max" value="1"/>

</attributes>
"j:ii!z]'%gii!!ty
e. 0,

</instance attributes>
quincy3Astart" name="sta

CEazZy.

<op id="stonitl

provider="heartbeat" type="external/riloe">

name="monitor" prereq="nothing" timeout="20s"/>
prereg="nothing" timeout="20s"/>

</operations>
<instance_attributes id="stonith_hb_quincy3_inst_attr">
<attributes>
<nvpair id="stonith hb_quincy3_attr 2" name="hostlist" value="quincy3"/>
<nvpair id="stonith_hb_quincy3_attr_ 3" name="ilo_hostname" value="192.168.16.153"/>
<nvpair id="stonith hb_quincy3_attr 4" name="ilo_user" value="jimi"/>
<nvpair id="stonith hb_quincy3_attr 5" name="ilo_password" value="secret:-)"/>
<nvpair id="stonith hb_quincy3_attr 6" name="ilo_can_reset" value="1"/>

<nvpair id="stonith hb_quincy3_attr 7" name="ilo_protocol" value="2.0"/>
<nvpair id="stonith hb_quincy3_attr 8" name="ilo_powerdown_method" value="off"/>
</attributes>
</instance_attributes>
</primitive>
</clone>

<clone id="stonith_ quincy4">
<instance_attributes id="stonith quincy4_inst attr">
<attributes>
<nvpair id="stonith quincy4_attr_ 1" name="clone_max" value="2"/>
<nvpair id="stonith quincy4_attr 2" name="clone_node_max" value="1"/>
</attributes>
</instance_attributes>

<primitive class="stonith" id="stonith_hb_ quincy4"
<operations>

<op id="stonith hb quincy4_mon" interval="30s"

<op id="stonith hb quincy4_start" name="start"

provider="heartbeat" type="external/riloe">

name="monitor" prereq="nothing" timeout="20s"/>
prereg="nothing" timeout="20s"/>

</operations>
<instance_attributes id="stonith_hb_quincy4_inst_attr">
<attributes>
<nvpair id="stonith hb_quincy4_attr 2" name="hostlist" value="quincy4"/>
<nvpair id="stonith_hb_quincy4_attr 3" name="ilo_hostname" value="192.168.16.154"/>
<nvpair id="stonith hb_quincy4_attr 4" name="ilo_user" value="jimi"/>
<nvpair id="stonith hb_quincy4_attr 5" name="ilo_password" value="secret:-)"/>

<nvpair
<nvpair

id="stonith hb_quincy4_attr_ 6"
id="stonith hb_quincy4_attr 7"

name="ilo_can_reset" value="1"/>
name="ilo_protocol" value="2.0"/>

<nvpair id="stonith hb_quincy4_attr 8" name="ilo_powerdown method" value="off"/>
</attributes>
</instance_attributes>
</primitive>
</clone>
</resources>
<constraints>

<rsc_location id="rsc_location_ostl" rsc="ostl">
<rule id="prefered location_ostl" score="100">
<expression attribute="#uname" id="prefered location_ ostl_expr" operation="eq" value="quincy3"/>
</rule>
</rsc_location>
<rsc_location id="rsc_location_ost2" rsc="ost2">
<rule id="prefered location_ost2" score="100">
<expression attribute="#uname" id="prefered location_ ost2_expr" operation="eq" value="quincy4"/>
</rule>
</rsc_location>
</constraints>
</configuration>
<status/>
</cib>

XML alternatives

* Facing the same difficulty, many others have proposed
alternative data formats.

* Ex: JSON
"world": |
{ "country" = "France" },
{ "country" = "USA",
"states" = |
{ "state" = "California" },
{ "state" = "Louisiana" }

]
* Pros: Considerably more legible; Trivial to parse in JavaScript...
but not in other languages

* Cons: Incompatibility; Fragmentation; Limited Support

Alternatives on the
tcl.tk wiki

Xmigen - Only designed to make it simple to generate
XML, not as an alternative.

TDL - Very similar to what | propose in many respects.
Pros: Strictly compatible with the Tcl syntax, contrary to
what | propose.

Cons: Not binary compatible with XML; Less human
friendly syntax for text, cdata sections, comments, etc.

Do we have to give up XML
compatibility?

Fundamental equivalence of all structured text trees,
starting with XML data files and Tcl programs.

DOM

Tcl as a member of the C family of languages
(Java, PHP, etc)

Is it possible to represent XML’'s DOM using a C-like syntax?
- In a way 100% compatible with XML.

(Allowing 100% fidelity back and forth conversions)
- With as few changes as possible.

The SML solution

XML (from a Google Earth .kml file)

<?xml version="1.0" encoding="UTF-8"?>
<kml>
<Folder>
<name>Take off zones in the Alps</name>
<open>1</open>
<Folder>
<name>Drome</name>
<visibility>0</visibility>
<Placemark>
<description>Take off</description>
<name>Mont Rachas</name>
<LookAt>
<longitude>5.0116666667</longitude>
<latitude>44.8355</latitude>
<range>4000</range>
<tilt>45</tilt>
<heading>0</heading>
</LookAt>
</Placemark>
</Folder>
</Folder>
</kml>

SML (generated by the sml script)

?xml version="1.0" encoding="UTF-8*
kml {
Folder {
name "Take off zones in the Alps"
open 1
Folder {
name Drome
visibility 0
Placemark {
description "Take off*
name "Mont Rachas”
LookAt {
longitude 5.0116666667
latitude 44.8355
range 4000
tilt 45
heading 0

SML Elements

* Elements normally end at the end of the line.
* They continue on the next line if there's a trailing '\'.

* They also continue if there's an unmatched "quotes” or
{braces} block.

* Multiple elements on the same line must be separated by a

Pros: A natural match for most modern XML files, which
usually have one XML terminal element per line; Same as Tcl
instructions.

Cons: ?

SML Attributes

* The syntax for attributes is the same as for XML. Including the
rules for using quotes, avoiding ‘<' and '&’, and escaping using
entity chars.
bird species='eagle' note="Found here & there"

Pros: Conversion straightforward; Readable as it is.
Cons: Not the same as Tcl’s string quoting and escaping rules.

SML Content Data

* The content data are normally inside a {curly braces} block.
tag {content}

* The content text is between "quotes”.
Escape '\" and """ with a'\'.
tag {"Some text with an \" and"; {an inner element} }
* If there are no further child elements embedded in contents (i.e. it’s
only text), the braces can be omitted.
tag "Some text with an \" but no inner element"

* Furthermore, if the text does not contain blanks, ", '=", *;", '#, '{", '}', '<',
*>', nor a trailing '\', the quotes around the text can be omitted too.
(ie. It cannot be confused with an attribute or a comment or any kind
of SML markup.)
tag 3.1415926535

Pros: Removes as much syntactic clutter as possible, with a result
looking a lot like Tcl.

Other types oF SML
markup

* Thisis a ?Processing instruction .
(The final '?' in XML is removed in SML.)

* Thisis a 'Declaration.(Ex:a '!doctype definition)

* Thisis a #-- Comment block, ending with two
dashes -- .

* Simplified case fora # One-line comment .
* Thisisa<[[Cdata section]]>. Initial \n discarded.
Pros: Conversion straightforward; Minimizes clutter.

Cons: Alternatives closer to Tcl syntax are possible. Ex: {
An indented Cdata section

}

The sml conversion
script

* Converts XML to SML, then back to XML without any
change.

* I’ve been using it for several years.

* Tested on a 1MB corpus of XML files from various
sources.

Demo

SML script status

* About 3000 lines of Tcl, half of which are an independent
debugging library.

* Performance: It converts about 10 KB/s of data on a 2 GHz
machine. => Should be rewritten in C if high perf needed.

* Known limitation as of 2013-09-23:
- The converted files use the local operating system line
endings .

The show script

* Displays a file tree as SML.
* Each file or directory is an SML element.

* Directories contain inner elements that represent files and
subdirectories.

* File contents are displayed as text if possible, else are
dumped in hexadecimal.

* Several modes of operation, with standard or
experimental SML, and a simplified output mode that’s
most readable.

Demo

The spath virtual
script

A thought experiment that gives some insight on the
power of the SML concept.

The xpath script for extracting XML data using XPATH

Writing a full-featured script able to use XPATH to extract
data from SML files would be very difficult.

Yet this can be done in a single line of code:
sml | xpath $*

Powerful in combination with the show script

Demo

SML files sizes

* The total size of the converted files is 12% smaller than
my original XML test files.

* Among big files, that reduction goes from 4% for a file
with lots of large CDATA elements, to 17% for a file with
deeply nested elements.

* Even after zipping the two full sets of samples, the SML
files archive is 2% smaller than the XML files archive.
Microsoft may like to use this to shoehorn a few more
Office .docx or .pptx documents into Windows phones. ©

Using the SML format for
exporting tcl data

The SML data format is a natural format for exporting any
kind of Tcl data:

* SML looks a lot like Tcl itself. (Particularly when not using
attributes.)

* In simple cases (without attributes), SML can often be
parsed by the Tcl interpreter directly as Tcl lists of lists.

* You get for free the compatibility with any outside tool that
supports XML.

Using SML for network
protocols

* The savings potential is even better in XML-based network
protocols, such as SOAP.

* Adapting existing XML-based protocols to use SML
instead would be very easy, and increase bandwidth
considerably.

* Creating new ad-hoc SML-based protocols would be easy
too, and packet analysis would be much easier!

Side note about Tcl
name spaces

The convergence of XML element trees, file system trees,
and Tcl or C++ variable name spaces, leads me to think that
the natural syntax for name spaces should not be:
::namespace::subspace::variable

nor:

namespace.subspace.variable

but instead:

Inamespace/subspace/variable

An SML parsing
library?

| never had to write one...

In simple cases (often) SML just looks like Tcl lists, which
the Tcl interpreter can digest directly.

In complex cases (rarely), it was too easy to use the sml
script to generate XML, then the TcIDOM package to parse
it. So | never took the time to write a full-fledged parsing
library.

Of course, forthe-sake-of the-art for performance reasons,
it would be nice to write one in C or C++, using APIs
similar to XML parsing libs.

The simplest is probably to modify TcIDOM or tDOM
packages to parse either format. Any volunteer?

An SML generation
library?

| never had to write one...
Simple SML files are straightforward to generate in Tcl.

Actually | do have one library... for PowerShell
Put-Dir dirname [attributes] [script block]
Put-EndDir dirname

Put-Value name [—-nameWidth N] [attributes] wvalue
Generates either XML or SML

Can easily be rewritten in Tcl

Better still, for Tcl, modify TcIDOM or tDOM packages to
generate either XML or SML. Any volunteer?

Next Steps

* Let people experiment with the tools, and give feedback about
the syntax, and the possible alternatives.
Scripts available at

* Is there any error or inconsistency that remains, preventing full
XML compatibility in some case? If so tell me:

* If interest grows, work with interested people to freeze a
standard, and create a simple SML generation and parsing
library.

* If interest grows even further, work with the TcIDOM and tDOM

developers to see if this could be added to their libraries as an
alternative XML encoding format, for both input and output.

* Consider using for your editing of complex XML files.

* Consider using for storing data in a friendly XML-compatible
way.

http://jf.larvoire.free.fr/progs/
mailto:jf.larvoire@free.fr

	Slide 1
	Agenda
	Who I am
	XML for Mummies
	Well formed XML
	Elements structure
	Other notable features
	Is XML simple?
	XML files that drove me crazy (1/2)
	XML files that drove me crazy (2/2)
	XML alternatives
	Alternatives on the tcl.tk wiki
	Do we have to give up XML compatibility?
	The SML solution
	SML Elements
	SML Attributes
	SML Content Data
	Other types oF SML markup
	The sml conversion script
	SML script status
	The show script
	The spath virtual script
	SML files sizes
	Using the SML format for exporting tcl data
	Using SML for network protocols
	Side note about Tcl name spaces
	An SML parsing library?
	An SML generation library?
	Next Steps

